Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

The effect of grain boundary junctions on grain microstructure evolution: 3D vertex simulation

L. A. Barrales-Mora, L. S. Shvindlerman, V. Mohles, G. Gottstein

Materials Science Forum / Proceedings of the the 3rd Internaional Conference on Recrystallization and Grain Growth, Korea, 558-559, 1051-1056, (2007)

DOI: 10.4028/www.scientific.net/MSF.558-559.1051

Download: BibTEX

A 3D Vertex Model has been successfully implemented to investigate the evolution of a special grain assembly during grain growth. The model considers the mean curvature as driving force for the motion of the vertices and allows the consideration of all parameters affecting the motion of the system, i.e., grain boundary energy and line tension of the triple lines, as well as grain boundary (GB), triple line (TL) and quadruple point (QP) mobility as well. The used special configuration makes it possible to study the influence of all structural elements of a grain boundary network on the evolution of the system by allowing the steady-state motion of the boundaries of a shrinking grain. In the present work the different mobilities have been systematically varied and the evolution of the grain size with time has been studied as a function of TL and QP mobility. The results of the simulations are finally linked to the different kinetic regimes reached by the system.

back
{"type":"article", "name":"l.a.barrales-mora200710", "author":"L. A. Barrales-Mora and L. S. Shvindlerman and V. Mohles and G. Gottstein", "title":"The effect of grain boundary junctions on grain microstructure evolution: 3D vertex simulation", "journal":"Materials Science Forum / Proceedings of the the 3rd Internaional Conference on Recrystallization and Grain Growth, Korea", "volume":"558-559", "OPTnumber":"", "OPTmonth":"10", "year":"2007", "OPTpages":"1051-1056", "OPTnote":"", "OPTkey":"", "DOI":"10.4028/www.scientific.net/MSF.558-559.1051"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N