Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Interaction between phase transformations and dislocations at incipient plasticity of monocrystalline silicon under nanoindentation

J. Zhang, A. Hartmaier, T. Sun, J. Zhang, Z. Wang, Y. Yan

Computational Materials Science, 131, 55 - 61, (2017)

DOI: 10.1016/j.commatsci.2017.01.043

Download: BibTEX

Structural phase transformation and dislocation slip are two important deformation modes of monocrystalline silicon. In the present work, we elucidate mechanisms of inhomogeneous elastic-plastic transition in spherical nanoindentation of monocrystalline silicon by means of molecular dynamics simulations. The Stillinger-Weber potential is utilized to present simultaneous phase transformations and dislocation activities in the silicon nanoindentation. And a bond angle analysis-based method is proposed to quantitatively clarify silicon phases. The influence of crystallographic orientation on the silicon nanoindentation is further addressed. Our simulation results indicate that prior to the ‘‘Pop-In” event, Si(010) undergoes inelastic deformation accompanied by the phase transformation from the Si-I to the Si-III/ Si-XII, which is not occurred in Si(110) and Si(111). While the phase transformation from the Si-I to the bct-5 is the dominant mechanism of incipient plasticity for each crystallographic orientation, dislocation nucleation is also an operating deformation mode in the elastic-plastic transition of Si(010). Furthermore, interactions between phase transformations and dislocations are more pronounced in Si (010) than the other two crystallographic orientations.

back
{"type":"article", "name":"j.zhang20174", "author":"J. Zhang and A. Hartmaier and T. Sun and J. Zhang and Z. Wang and Y. Yan", "title":"Interaction between phase transformations and dislocations at incipient plasticity of monocrystalline silicon under nanoindentation", "journal":"Computational Materials Science", "volume":"131", "OPTnumber":"", "OPTmonth":"4", "year":"2017", "OPTpages":"55 - 61", "OPTnote":"", "OPTkey":"Monocrystalline silicon; nanoindentation; phase transformation; dislocation; molecular dynamics", "DOI":"10.1016/j.commatsci.2017.01.043"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N