Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Vibrational and magnetic properties of crystalline CuTe2O5

Y. Lysogorskiy, R. Eremina, T. Gavrilova, O. Nedopekin, D. Tayurskii

JETP Letters, 100, 652, (2015)

DOI: 10.1134/S002136401422010X

Download: BibTEX

In the present work we have performed an ab initio calculation of vibrational properties of CuTe2O5 by means of density functional theory (DFT) method. One has compared calculated values with known experimental data on Raman and infrared spectroscopy in order to verify the obtained results. Lattice contribution to the heat capacity obtained from the ab initio simulations was added to magnetic contribution calculated from the simple spin Hamiltonian model in order to obtain total heat capacity. Obtained results are in good agreement with the experimental data. Thus, the DFT methods could complement the experimental and theoretical studying of low-dimensional magnetic systems such as CuTe2O5.

back
{"type":"article", "name":"y.lysogorskiy20152", "author":"Y. Lysogorskiy and R. Eremina and T. Gavrilova and O. Nedopekin and D. Tayurskii", "title":"Vibrational and magnetic properties of crystalline CuTe2O5", "journal":"JETP Letters", "volume":"100", "OPTnumber":"10", "OPTmonth":"2", "year":"2015", "OPTpages":"652", "OPTnote":"", "OPTkey":"", "DOI":"10.1134/S002136401422010X"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N