Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

A variational growth approach to topology optimization

P. Junker, K. Hackl

Structural and Multidisciplinary Optimization, 52, 293-304, (2015)

DOI: 10.1007/s00158-015-1241-0

Download: BibTEX

This paper presents a new approach to topology optimization that is based on observations of natural biological systems in which growth processes are initialized during high mechanical loading. A compliance parameter is introduced that serves as an internal variable and for which evolution equations are derived using the variational principle of the minimum of the dissipation potential. The well-known problem of checkerboarding is faced with regularization techniques on the Helmholtz free energy. The final procedure uses only the Helmholtz free energy as input. Several numerical examples are given for demonstration purposes. © 2015, Springer-Verlag Berlin Heidelberg.

back
{"type":"article", "name":"p.junker20158", "author":"P. Junker and K. Hackl", "title":"A variational growth approach to topology optimization", "journal":"Structural and Multidisciplinary Optimization", "volume":"52", "OPTnumber":"2", "OPTmonth":"8", "year":"2015", "OPTpages":"293-304", "OPTnote":"", "OPTkey":"Variational modeling, Regularization, Growth, Principle of the minimum of the dissipation potential, Topology optimization", "DOI":"10.1007/s00158-015-1241-0"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N