Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Application of a biphasic representative volume element to the simulation of wave propagation through cancellous bone

S. Ilic, K. Hackl, R.P. Gilbert

Journal of Computational Acoustics, 19, 111-138, (2011)

DOI: 10.1142/S0218396X11004407

Download: BibTEX

This paper deals with the application of the multiscale finite element method for simulating the cancellous bone. For this purpose, two types of biphasic representative volume elements are proposed. In the first one, the solid frame consists of thin walls simulated by shell elements. On the other hand, the solid phase of the second model is made up of columns consisting of eight-node brick elements. This choice of representative volume elements is motivated by experimental investigations reporting on the existence of plate-like and rode-like types of cancellous bone and possible conversions between them. The proposed representative volume elements are used to calculate effective material tensors and parameters and to investigate their change in terms of increasing porosity, which is typical for osteoporosis. As a first example, changes in the geometry of the representative volume elements are used to explore material anisotropy. In the end, the final example considers wave propagation through the bone treated as a homogenized medium. © 2011 IMACS.

back
{"type":"article", "name":"s.ilic20116", "author":"S. Ilic and K. Hackl and R.P. Gilbert", "title":"Application of a biphasic representative volume element to the simulation of wave propagation through cancellous bone", "journal":"Journal of Computational Acoustics", "volume":"19", "OPTnumber":"2", "OPTmonth":"6", "year":"2011", "OPTpages":"111-138", "OPTnote":"", "OPTkey":"attenuation; cancellous bone; multiscale fem; wave propagation", "DOI":"10.1142/S0218396X11004407"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N