Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

A variational approach to grooving and wetting

K. Hackl, F.D. Fischer, K. Klevakina, J. Renner, J. Svoboda

Acta Materialia, 61, 1581-1591, (2013)

DOI: 10.1016/j.actamat.2012.11.035

Download: BibTEX

Two bodies, e.g. grains with a certain surface contour, are assumed to be in contact at a plane interface, e.g. a common grain boundary with an arbitrary inclination relatively to the surface and with zero mobility and diffusivity. A groove appears due to surface diffusion along the triple line, i.e. the intersection line of the two surfaces and the grain boundary. The thermodynamic extremum principle is applied to derive the evolution equations for the surfaces of both bodies as well as the contact conditions at the triple line. Applications to grooving and wetting are demonstrated and compared with the results from the literature. The simulations indicate that the groove root angle can be significantly different from the value of the dihedral angle calculated from the equilibrium condition for the specific grain boundary and surface energies. Moreover, it is demonstrated that the groove angle is dependent on the kinetic parameters, e.g. surface diffusion coefficients of individual grains. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

back
{"type":"article", "name":"k.hackl20133", "author":"K. Hackl and F.D. Fischer and K. Klevakina and J. Renner and J. Svoboda", "title":"A variational approach to grooving and wetting", "journal":"Acta Materialia", "volume":"61", "OPTnumber":"5", "OPTmonth":"3", "year":"2013", "OPTpages":"1581-1591", "OPTnote":"", "OPTkey":"Grain boundary diffusion, kinetics surfaces triple junction, thermodynamic extremum principle", "DOI":"10.1016/j.actamat.2012.11.035"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N