Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Modeling of damage in soft biological tissues and application to arterial walls

D. Balzani, G.A. Holzapfel, S. Brinkhues

Computational Plasticity XI - Fundamentals and Applications, COMPLAS XI, 764-775, (2011)

Download: BibTEX

A new material model is proposed for the description of stress-softening observed in cyclic tension tests performed on soft biological tissues. The modeling framework is based on the concept of internal variables introducing a scalar-valued variable for the representation of fiber damage. Remanent strains in fiber direction can be represented as a result of microscopic damage of the fiber crosslinks. Particular internal variables are defined able to capture the nature of soft biological tissues that no damage occurs in the physiological loading domain. A specific model is adjusted to experimental data taking into account the supra-physiological loading regime. For the description of the physiological domain polyconvex functions are used which also take into account fiber dispersion in a phenomenological approach. The applicability of the model in numerical simulations is shown by a representative example where the damage distribution in an arterial cross-section is analyzed.

back
{"type":"conference", "name":"d.balzani20119", "author":"D. Balzani and G.A. Holzapfel and S. Brinkhues", "title":"Modeling of damage in soft biological tissues and application to arterial walls", "journal":"Computational Plasticity XI - Fundamentals and Applications, COMPLAS XI", "volume":"", "OPTnumber":"", "OPTmonth":"9", "year":"2011", "OPTpages":"764-775", "OPTnote":"", "OPTkey":"arterial wall; computational biomechanics; damage mechanics; soft biological tissue; softening behavior, biomechanics; fibers; loading; physiology; stresses; tensile testing, physiological models", "DOI":""}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N