Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Approximation of random microstructures by periodic statistically similar representative volume elements based on lineal-path functions

J. Schröder, D. Balzani, D. Brands

Archive of Applied Mechanics, 81, 975-997, (2011)

DOI: 10.1007/s00419-010-0462-3

Download: BibTEX

For the direct incorporation of micromechanical information into macroscopic boundary value problems, the FE2-method provides a suitable numerical framework. Here, an additional microscopic boundary value problem, based on evaluations of representative volume elements (RVEs), is attached to each Gauss point of the discretized macrostructure. However, for real random heterogeneous microstructures the choice of a "large" RVE with a huge number of inclusions is much too time-consuming for the simulation of complex macroscopic boundary value problems, especially when history-dependent constitutive laws are adapted for the description of individual phases of the mircostructure. Therefore, we propose a method for the construction of statistically similar RVEs (SSRVEs), which have much less complexity but reflect the essential morphological attributes of the microscale. If this procedure is prosperous, we arrive at the conclusion that the SSRVEs can be discretized with significantly less degrees of freedom than the original microstructure. The basic idea for the design of such SSRVEs is to minimize a least-square functional taking into account suitable statistical measures, which characterize the inclusion morphology. It turns out that the combination of the volume fraction and the spectral density seems not to be sufficient. Therefore, a hybrid reconstruction method, which takes into account the lineal-path function additionally, is proposed that yields promising realizations of the SSRVEs. In order to demonstrate the performance of the proposed procedure, we analyze several representative numerical examples. © 2010 Springer-Verlag.

back
{"type":"article", "name":"j.schröder20117", "author":"J. Schröder and D. Balzani and D. Brands", "title":"Approximation of random microstructures by periodic statistically similar representative volume elements based on linealpath functions", "journal":"Archive of Applied Mechanics", "volume":"81", "OPTnumber":"7", "OPTmonth":"7", "year":"2011", "OPTpages":"975-997", "OPTnote":"", "OPTkey":"numerical homogenization, random microstructure, statistically similar RVE, lineal-path function, spectral-density, finite plasticity", "DOI":"10.1007/s00419-010-0462-3"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N