Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Membrane structures with a nonlinear anisotropic material behavior - Aspects of material testing and numerical simulation

J. Schröder, D. Balzani, N. Stranghöner, J. Uhlemann, F. Gruttmann, K. Saxe

Bauingenieur, 86, 381-389, (2011)

Download: BibTEX

Nowadays, the design of textile membrane structures is based on the strong simplification of a linear elastic material behavior with different elasticity moduli in warp- and weft-direction. In this contribution it is shown by comparing with experimental data that this assumption is not satisfactory for specific loading situations. A material model formulation in the framework of the continuum mechanics provides the ability of a more accurate description of the nonlinear anisotropic material behavior. Therefore, a hyperelastic model neglecting visco-elasto-plastic properties is proposed for the steady-state situation taking into account the nonlinearity of the material response. In addition to that, a finite element formulation based on a shell theory is provided which enables simulations making use of the proposed material model. A numerical example shows the possibilities of such simulations and the potential for the construction of textile membrane structures by exploiting an optimal arrangement of the warp- and weft-directions.

back
{"type":"article", "name":"j.schröder20119", "author":"J. Schröder and D. Balzani and N. Stranghöner and J. Uhlemann and F. Gruttmann and K. Saxe", "title":"Membrane structures with a nonlinear anisotropic material behavior Aspects of material testing and numerical simulation", "journal":"Bauingenieur", "volume":"86", "OPTnumber":"", "OPTmonth":"9", "year":"2011", "OPTpages":"381-389", "OPTnote":"", "OPTkey":"", "DOI":""}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N