Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls

D. Balzani, S. Brinkhues, G.A. Holzapfel

Computer Methods in Applied Mechanics and Engineering, 213-216, 139-151, (2012)

DOI: 10.1016/j.cma.2011.11.015

Download: BibTEX

In this paper a new material model is proposed for the description of stress-softening observed in cyclic tension tests of collagenous soft tissues such as arterial walls, for applied loads beyond the physiological level. The modeling framework makes use of terms known from continuum damage mechanics and the concept of internal variables introducing a scalar-valued variable for the representation of fiber damage. A principle is given for the construction of damage models able to reflect remanent strains as a result of microscopic damage in the reinforcing collagen fiber families. Particular internal variables are defined able to capture the nature of arterial tissues that no damage occurs in the physiological loading domain. By application of this principle, specific models are derived and fitted to experimental data. Finally, their applicability in numerical simulations is shown by some representative examples where the damage distribution in arterial cross-sections is analyzed. © 2011 Elsevier B.V.

back
{"type":"article", "name":"d.balzani20123", "author":"D. Balzani and S. Brinkhues and G.A. Holzapfel", "title":"Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls", "journal":"Computer Methods in Applied Mechanics and Engineering", "volume":"213-216", "OPTnumber":"", "OPTmonth":"3", "year":"2012", "OPTpages":"139-151", "OPTnote":"", "OPTkey":"Collagenous soft tissue, damage hysteresis, anisotropy, strain energy, remanent strain, arterial wall", "DOI":"10.1016/j.cma.2011.11.015"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N