Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

A novel mixed finite element for finite anisotropic elasticity; the SKA-element Simplified Kinematics for Anisotropy

J. Schröder, N. Viebahn, D. Balzani, P. Wriggers

Computer Methods in Applied Mechanics and Engineering, 310, 475-494, (2016)

DOI: 10.1016/j.cma.2016.06.029

Download: BibTEX

A variety of numerical approximation schemes for boundary value problems suffer from so-called locking-phenomena. It is well known that in such cases several finite element formulations exhibit poor convergence rates in the basic variables. A serious locking phenomenon can be observed in the case of anisotropic elasticity, due to high stiffness in preferred directions. The main goal of this paper is to overcome this locking problem in anisotropic hyperelasticity by introducing a novel mixed variational framework. Therefore we split the strain energy into two main parts, an isotropic and an anisotropic part. For the isotropic part we can apply different well-established approximation schemes and for the anisotropic part we apply a constant approximation of the deformation gradient or the right Cauchy–Green tensor. This additional constraint is attached to the strain energy function by a second-order tensorial Lagrange-multiplier, governed by a Simplified Kinematic for the Anisotropic part. As a matter of fact, for the tested boundary value problems the SKA-element based on quadratic ansatz functions for the displacements, performs excellent and behaves more robust than competitive formulations. © 2016 Elsevier B.V.

back
{"type":"article", "name":"j.schröder201610", "author":"J. Schröder and N. Viebahn and D. Balzani and P. Wriggers", "title":"A novel mixed finite element for finite anisotropic elasticity; the SKAelement Simplified Kinematics for Anisotropy", "journal":"Computer Methods in Applied Mechanics and Engineering", "volume":"310", "OPTnumber":"", "OPTmonth":"10", "year":"2016", "OPTpages":"475-494", "OPTnote":"", "OPTkey":"mixed finite elements, anisotropic hyperelasticity, SKA-element, lagrange-multiplier", "DOI":"10.1016/j.cma.2016.06.029"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N