Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Analytical and numerical modelling of a sub- and supersonic moving load front along a rod’s skin

W.E. Weber, Y.F. Fangye, D. Balzani, B.W. Zastrau

Advanced Structured Materials, 60, 469-489, (2016)

DOI: 10.1007/978-981-10-0959-4_26

Download: BibTEX

For both civil and mechanical engineering dynamic loads of structures are a major source of inner material damage. If (fibre) reinforced composite materials are exposed to such dynamic loads a pull-out of the reinforcing elements may occur. This dynamic pull-out of reinforcing elements is characterized by, amongst others, moving boundaries between regions of (partly) damaged and perfect bonding of reinforcement and surrounding matrix. To adequately describe these moving boundaries leads to enormous challenges. Within this contribution a simplified mechanical problem is investigated, which however provides some of the main phenomena of the dynamic pull-out. In detail, the stress and displacement fields within a rod of semi-infinite extent under a distributed load are evaluated. Herein, the front of the constant longitudinal load moves along the rod in longitudinal direction. The investigations are performed both analytically and numerically thus validating the model idealization included in the analytical solution. © Springer Science+Business Media Singapore 2016.

back
{"type":"inbook", "name":"w.e.weber20165", "author":"W.E. Weber and Y.F. Fangye and D. Balzani and B.W. Zastrau", "title":"Analytical and numerical modelling of a sub and supersonic moving load front along a rod’s skin", "journal":"Advanced Structured Materials", "volume":"60", "OPTnumber":"", "OPTmonth":"5", "year":"2016", "OPTpages":"469-489", "OPTnote":"", "OPTkey":"", "DOI":"10.1007/978-981-10-0959-4_26"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N