Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Contribution of the reflection to the attenuation properties of cancellous bone

S. Klinge, K. Hackl

Complex Variables and Elliptic Equations, 57, 425-436, (2011)

DOI: 10.1080/17476933.2011.617011

Download: BibTEX

The article deals with the contribution of reflection effects to the attenuation properties of cancellous bone. The bone behaviour is simulated by the multiscale finite element method, a numerical homogenization approach, suitable for the modelling of heterogeneous material with a highly oscillatory microstructure. The focus is on the modelling of a novel type of the representative volume element, which apart from the solid framework filled with fluid marrow also includes an infinitesimally thin 'transition' layer at the contact of the phases. The mentioned layer is implemented in order to simulate the amplitude transformation of an incident wave and to take the loss of energy caused by the reflection into account. The given numerical examples consider the simulation of wave propagation through a sample while the excitation frequency is varied. The numerical values are compared with the results which are determined without considering the reflection, in order to point out the contribution of the newly introduced phenomenon. © 2012 Copyright Taylor and Francis Group, LLC.

back
{"type":"article", "name":"s.klinge20119", "author":"S. Klinge and K. Hackl", "title":"Contribution of the reflection to the attenuation properties of cancellous bone", "journal":"Complex Variables and Elliptic Equations", "volume":"57", "OPTnumber":"2-4", "OPTmonth":"9", "year":"2011", "OPTpages":"425-436", "OPTnote":"", "OPTkey":"multiscale FEM, variational principles, homogenization, cancellous bone, attenuation, reflection", "DOI":"10.1080/17476933.2011.617011"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N