Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Machine-learning correction to density-functional crystal structure optimization

R. Hussein, J. Schmidt, T. Barros, M. Marques, S. Botti

MRS Bulletin, 47, 765–771, (2022)

DOI: 10.1557/s43577-022-00310-9

Download: BibTEX

Density functional theory is routinely applied to predict crystal structures. The most common exchange-correlation functionals used to this end are the Perdew–Burke–Ernzerhof (PBE) approximation and its variant PBEsol. We investigate the performance of these functionals for the prediction of lattice parameters and show how to enhance their accuracy using machine learning. Our data set is constituted by experimental crystal structures of the Inorganic Crystal Structure Database matched with PBE-optimized structures stored in the materials project database. We complement these data with PBEsol calculations. We demonstrate that the accuracy and precision of PBE/PBEsol volume predictions can be noticeably improved a posteriori by employing simple, explainable machine learning models. These models can improve PBE unit cell volumes to match the accuracy of PBEsol calculations, and reduce the error of the latter with respect to experiment by 35 percent. Further, the error of PBE lattice constants is reduced by a factor of 3–5. A further benefit of our approach is the implicit correction of finite temperature effects without performing phonon calculations.

back
{"type":"article", "name":"r.hussein20228", "author":"R. Hussein and J. Schmidt and T. Barros and M. Marques and S. Botti", "title":"Machinelearning correction to densityfunctional crystal structure optimization", "journal":"MRS Bulletin", "volume":"47", "OPTnumber":"8", "OPTmonth":"8", "year":"2022", "OPTpages":"765–771", "OPTnote":"", "OPTkey":"machine learning; crystallographic structure; predictive", "DOI":"10.1557/s43577-022-00310-9"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N