Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Defect levels from SCAN and MBJ meta-GGA exchange-correlation potentials

T. Rauch, F. Munoz, M. Marques, S. Botti

Physical Review B, 104, 064105, (2021)

DOI: 10.1103/physrevb.104.064105

Download: BibTEX

For more than a decade the HSE06 hybrid exchange-correlation functional developed by Heyd, Scuseria and Ernzerhof has provided a tool for reliable defect level calculations in density functional theory for which postprocessing tools are not necessary, in contrast to previous calculations using semilocal density functionals. One of the main reasons for its reliability is the high precision of HSE06 for band gap calculations. Recently, other functionals from the meta-generalized gradient approximation (meta-GGA) class have been used extensively to calculate the electronic properties of solids. In particular, band gaps can be accurately evaluated with the modified Becke-Johnson (MBJ) potential, and relaxed atomic structures close to experimental findings can be obtained with the strongly constrained and appropriately normed (SCAN) exchange-correlation functional. Both approaches are computationally cheaper than HSE06, and we consider here their performance for defect level calculations. We compare results for the ε(+/0) transition levels of seven donors and ε(0/−) transition levels of four acceptors in group IV semiconductors. We conclude that in certain situations where HSE06 cannot be applied because of excessive computational costs, SCAN and MBJ might provide a good alternative.

back
{"type":"article", "name":"t.rauch20218", "author":"T. Rauch and F. Munoz and M. Marques and S. Botti", "title":"Defect levels from SCAN and MBJ metaGGA exchangecorrelation potentials", "journal":"Physical Review B", "volume":"104", "OPTnumber":"6", "OPTmonth":"8", "year":"2021", "OPTpages":"064105", "OPTnote":"", "OPTkey":"", "DOI":"10.1103/physrevb.104.064105"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N