Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Electronic structure of molecules, surfaces, and molecules on surfaces with the local modified Becke–Johnson exchange–correlation potential

T. Rauch, M. Marques, S. Botti

Journal of Chemical Theory and Computation, 17, 4746–4755, (2021)

DOI: 10.1021/acs.jctc.1c00255

Download: BibTEX

The knowledge of electronic properties of matter is the key to the understanding of its properties and to propose useful applications. To model hybrid organic/inorganic systems with the plane-wave approach, large supercells with many atoms are usually necessary to minimize artificial interactions between periodic images. For such systems, accurate approximations to the exchange–correlation functional of density functional theory, such as hybrid functionals, become computationally expensive, and cheaper approaches need to be considered. Here, we apply the local modified Becke–Johnson exchange–correlation potential to free molecules and surfaces and study its accuracy for calculated ionization potentials. This quantity being important to understand the band alignment of composite heterogeneous systems, we demonstrate the application of the potential to the electronic structure calculation of an exemplary composite semiconductor/molecule system, namely, a F6-TCNNQ molecule adsorbed on a hydrogenated Si(111) surface.

back
{"type":"article", "name":"t.rauch20217", "author":"T. Rauch and M. Marques and S. Botti", "title":"Electronic structure of molecules, surfaces, and molecules on surfaces with the local modified Becke–Johnson exchange–correlation potential", "journal":"Journal of Chemical Theory and Computation", "volume":"17", "OPTnumber":"8", "OPTmonth":"7", "year":"2021", "OPTpages":"4746–4755", "OPTnote":"", "OPTkey":"", "DOI":"10.1021/acs.jctc.1c00255"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N