Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Local modified Becke-Johnson exchange-correlation potential for interfaces, surfaces, and two-dimensional materials

T. Rauch, M. Marques, S. Botti

Journal of Chemical Theory and Computation, 16, 2654–2660, (2020)

DOI: 10.1021/acs.jctc.9b01147

Download: BibTEX

The modified Becke-Johnson meta-GGA potential of density functional theory has been shown to be the best exchange-correlation potential to determine band gaps of crystalline solids. However, it cannot be consistently used for the electronic structure of nonperiodic or nanostructured systems. We propose an extension of this potential that enables its use to study heterogeneous, finite, and low-dimensional systems. This is achieved by using a coordinate-dependent expression for the parameter c that weights the Becke-Russel exchange, in contrast to the original global formulation, where c is just a fitted number. Our potential takes advantage of the excellent description of band gaps provided by the modified Becke-Johnson potential and preserves its modest computational effort. Furthermore, it yields with one single calculation band diagrams and band offsets of heterostructures and surfaces. We exemplify the usefulness and efficiency of our local meta-GGA potential by testing it for a series of interfaces (Si/SiO2, AlAs/GaAs, AlP/GaP, and GaP/Si), a Si surface, and boron nitride monolayer.

back
{"type":"article", "name":"t.rauch20202", "author":"T. Rauch and M. Marques and S. Botti", "title":"Local modified BeckeJohnson exchangecorrelation potential for interfaces, surfaces, and twodimensional materials", "journal":"Journal of Chemical Theory and Computation", "volume":"16", "OPTnumber":"4", "OPTmonth":"2", "year":"2020", "OPTpages":"2654–2660", "OPTnote":"", "OPTkey":"band structure; chemical calculations, electrical conductivity; interfaces; materials", "DOI":"10.1021/acs.jctc.9b01147"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N