Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Structural prediction of stabilized atomically thin tin layers

P. Borlido, A. Huran, M. Marques, S. Botti

npj 2D Materials and Applications, 3, 21, (2019)

DOI: 10.1038/s41699-019-0103-9

Download: BibTEX

The family of group IV two-dimensional materials shows a rich variety of structural, electronic and topological properties. Only graphene is stable in the honeycomb structure, while buckling and dumbbell configurations stabilize silicene and germanene. Here we investigate from first principles the lowest-energy atomic arrangements of atomically-thin tin layers. Our calculations are performed with a very efficient method for global structural prediction, combined with constrains that enforce the desired one-dimensional confinement and include the effect of strain due to the substrate. We discover a series of new structures that span a large range of atomic densities and are considerably more stable than hexagonal single- or double-layer stanene, as well as dumbbell structures. The ground state, a metallic double layer with a square lattice that lies 295 meV/atom below honeycomb stanene and only 149 meV/atom above bulk α-tin, is akin to the atomic arrangement of a layer of romarchite tin oxide. Due to its enhanced stability with respect to honeycomb stanene, we propose that this structure can be easily synthesized on appropriate lattice-matched metallic substrates.

back
{"type":"article", "name":"p.borlido20195", "author":"P. Borlido and A. Huran and M. Marques and S. Botti", "title":"Structural prediction of stabilized atomically thin tin layers", "journal":"npj 2D Materials and Applications", "volume":"3", "OPTnumber":"1", "OPTmonth":"5", "year":"2019", "OPTpages":"21", "OPTnote":"", "OPTkey":"", "DOI":"10.1038/s41699-019-0103-9"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N