Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Stable hybrid organic–inorganic halide perovskites for photovoltaics from ab initio high-throughput calculations

S. Körbel, M. Marques, S. Botti

Journal of Materials Chemistry A, 6, 6463–6475, (2018)

DOI: 10.1039/c7ta08992a

Download: BibTEX

Hybrid perovskites, such as methylammonium lead iodide, have revolutionized research on solar cells in the past few years. Well known instability and toxicity issues restrain however the large-scale application of these perovskites in commercial photovoltaic technology. It is therefore the most urgent task to find a way to chemically stabilize these and other lead-free perovskites, preserving at the same time their excellent absorption and charge-transport properties. The obvious route to follow is chemical substitution. In this work we screen the periodic table of elements for hybrid organic–inorganic halide perovskites, using high-throughput density-functional theory calculations. We consider compounds with the composition A+B2+X3−, where A is a molecular organic cation, X is a halogen, and B is a divalent element. For the molecular cation, we vary the molecule size from sulfonium (H3S, very small) to tert-butylammonium (C4NH12, very large). All thermodynamically stable hybrid perovskites are then further characterized by calculating their band gaps and effective masses, to identify the most promising candidates for further experimental and theoretical characterization. We find that the substitution of the organic molecule is the most promising way to enhance thermodynamic stability, while there is no optimal replacement for lead or Sn, unless one considers partial substitution or alloying.

back
{"type":"article", "name":"s.körbel20183", "author":"S. Körbel and M. Marques and S. Botti", "title":"Stable hybrid organic–inorganic halide perovskites for photovoltaics from ab initio highthroughput calculations", "journal":"Journal of Materials Chemistry A", "volume":"6", "OPTnumber":"15", "OPTmonth":"3", "year":"2018", "OPTpages":"6463–6475", "OPTnote":"", "OPTkey":"", "DOI":"10.1039/c7ta08992a"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N