Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Structural prediction of two-dimensional materials under strain

P. Borlido, C. Steigemann, N. Lathiotakis, M. Marques, S. Botti

2D Materials, 4, 045009, (2017)

DOI: 10.1088/2053-1583/aa85c6

Download: BibTEX

We develop a procedure for the investigation of the phase diagram of materials under strain. This is based on a global structural prediction method where the volume is constrained to predefined values. Our method is more general than other available techniques, and it avoids at the same time numerical instabilities. As a first example, we investigate the phase diagram of two-dimensional carbon as a function of the area per atom. As expected, we find that graphene is stable for a large range of biaxial strains. However, at large areas there appear novel carbon allotropes containing decagons and higher order polygons. These phases are thermodynamically stable for strains below the breaking point of graphene, indicating that they could be accessible experimentally.

back
{"type":"article", "name":"p.borlido201712", "author":"P. Borlido and C. Steigemann and N. Lathiotakis and M. Marques and S. Botti", "title":"Structural prediction of twodimensional materials under strain", "journal":"2D Materials", "volume":"4", "OPTnumber":"4", "OPTmonth":"12", "year":"2017", "OPTpages":"045009", "OPTnote":"", "OPTkey":"", "DOI":"10.1088/2053-1583/aa85c6"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N