Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Strong renormalization of the electronic band gap due to lattice polarization in the

S. Botti, M. Marques

Physical Review Letters, 110, 226404, (2013)

DOI: 10.1103/physrevlett.110.226404

Download: BibTEX

The self-consistent GW band gaps are known to be significantly overestimated. We show that this overestimation is, to a large extent, due to the neglect of the contribution of the lattice polarization to the screening of the electron-electron interaction. To solve this problem, we derive within the GW formalism a generalized plasmon-pole model that accounts for lattice polarization. The resulting GW self-energy is used to calculate the band structures of a set of binary semiconductors and insulators. The lattice contribution always decreases the band gap. The shrinkage increases with the size of the longitudinal-transverse optical splitting and it can represent more than 15% of the band gap in highly polar compounds, reducing the band-gap percentage error by a factor of 3.

back
{"type":"article", "name":"s.botti20135", "author":"S. Botti and M. Marques", "title":"Strong renormalization of the electronic band gap due to lattice polarization in the
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N