Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Band structures of delafossite transparent conductive oxides from a self-consistent GW approach

F. Trani, J. Vidal, S. Botti, M. Marques

Physical Review B, 82, 085115, (2010)

DOI: 10.1103/physrevb.82.085115

Download: BibTEX

We present a comparative study of the electronic band structures of the compounds CuMO2 (M=B,Al,In,Ga) which belong to the family of delafossite transparent conductive oxides. The theoretical approaches we use are the standard local-density approximation (LDA) to density-functional theory, LDA+U, hybrid functionals, and perturbative GW on top of LDA or self-consistent Coulomb hole plus screened exchange calculations. The latter approach, state-of-the-art theoretical approach for quasiparticle band structures, predicts direct band gaps that are compatible with experimental optical gaps only after including the strong polaronic and excitonic effects present in these materials. For what concerns the so-called band-gap anomaly of delafossite compounds, we find that GW approaches yield the same qualitative trends with increasing anion atomic number as the LDA: accounting for the oscillator strength at the absorption edge is the key to explain the experimental trend. None of the methods that we applied beyond the simple LDA is in agreement with the small indirect gaps found by many early experiments. This supports the recent view that the absorption bands identified as a sign of the indirect experimental gaps are likely due to defect states in the gap and are not a property of the pristine material.

back
{"type":"article", "name":"f.trani20108", "author":"F. Trani and J. Vidal and S. Botti and M. Marques", "title":"Band structures of delafossite transparent conductive oxides from a selfconsistent \textit{GW} approach", "journal":"Physical Review B", "volume":"82", "OPTnumber":"8", "OPTmonth":"8", "year":"2010", "OPTpages":"085115", "OPTnote":"", "OPTkey":"", "DOI":"10.1103/physrevb.82.085115"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N