Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

The planar-to-tubular structural transition in boron clusters from optical absorption

M. Marques, S. Botti

The Journal of Chemical Physics, 123, 014310, (2005)

DOI: 10.1063/1.1948386

Download: BibTEX

The optical response of the lowest-energy isomers of the B20 family is calculated using time-dependent density-functional theory within a real-space, real-time scheme. Significant differences are found among the absorption spectra of the clusters studied. We show that these differences can be easily related to changes in the overall geometry. Optical spectroscopy is thus an efficient tool to characterize the planar-to-tubular structural transition, known to be present in these boron-based systems.

back
{"type":"article", "name":"m.marques20057", "author":"M. Marques and S. Botti", "title":"The planartotubular structural transition in boron clusters from optical absorption", "journal":"The Journal of Chemical Physics", "volume":"123", "OPTnumber":"1", "OPTmonth":"7", "year":"2005", "OPTpages":"014310", "OPTnote":"", "OPTkey":"HOMO and LUMO; time dependent density functional theory; electrostatics; optical absorption; optical properties; isomerism; chemical elements; absorption spectroscopy; optical spectroscopy; photoelectron spectroscopy", "DOI":"10.1063/1.1948386"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N