Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Symmetry-based computational search for novel binary and ternary 2D materials

H. Wang, J. Schmidt, M. Marques, L. Wirtz, A. Romero

2D Materials, 10, 035007, (2023)

DOI: 10.1088/2053-1583/accc43

Download: BibTEX

We present a symmetry-based systematic approach to explore the structural and compositional richness of two-dimensional materials. We use a 'combinatorial engine' that constructs candidate compounds by occupying all possible Wyckoff positions for a certain space group with combinations of chemical elements. These combinations are restricted by imposing charge neutrality and the Pauling test for electronegativities. The structures are then pre-optimized with a specially crafted universal neural-network force-field, before a final step of geometry optimization using density-functional theory is performed. In this way we unveil an unprecedented variety of two-dimensional materials, covering the whole periodic table in more than 30 different stoichiometries of form AnBm or AnBmCk. Among the discovered structures, we find examples that can be built by decorating nearly all Platonic and Archimedean tessellations as well as their dual Laves or Catalan tilings. We also obtain a rich, and unexpected, polymorphism for some specific compounds. We further accelerate the exploration of the chemical space of two-dimensional materials by employing machine-learning-accelerated prototype search, based on the structural types discovered in the systematic search. In total, we obtain around 6500 compounds, not present in previous available databases of 2D materials, with a distance to the convex hull of thermodynamic stability smaller than 250 meV/atom.

back
{"type":"article", "name":"h.wang20237", "author":"H. Wang and J. Schmidt and M. Marques and L. Wirtz and A. Romero", "title":"Symmetrybased computational search for novel binary and ternary 2D materials", "journal":"2D Materials", "volume":"10", "OPTnumber":"3", "OPTmonth":"7", "year":"2023", "OPTpages":"035007", "OPTnote":"", "OPTkey":"", "DOI":"10.1088/2053-1583/accc43"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N