Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Superior carbon nanotube stability by molecular filling:a single-chirality study at extreme pressures

C. Bousige, A. Stolz, S. Silva-Santos, J. Shi, W. Cui, C. Nie, M. Marques, E. Flahaut, M. Monthioux, A. San-Miguel

Carbon, 183, 884–892, (2021)

DOI: 10.1016/j.carbon.2021.07.068

Download: BibTEX

Carbon nanotubes have extraordinary mechanical properties, but modifications of their structure tend to weaken them. Here, we have studied by experiments and modelling the one-dimensional filling of single chirality (6,5) carbon nanotubes with iodine and water. We show that iodine-filling can enhance the pressure of radial collapse of these nanotubes by a factor 2 compared to the empty (6,5) tubes. For water filling, this enhancement factor reduces to 1.4. Our single-chirality study allows correlating the different Raman signatures of the radial collapsing process, which was not possible in samples with mixed chiralities. A clear spectroscopic signature of the collapse pressure can thus be given: it is the pressure at which the G-band frequency evolution with pressure softens while the radial breathing mode intensity vanishes. These new criteria for the detection of radial collapse allow correcting some existing discrepancies in the literature. Finally, we discuss the impact of molecular filling on the radial mechanical stability as a function of the tube diameter. It results that molecular filling allows for a superior stability effect than filling with tubes (i.e. multi-wall carbon nanotubes). The stability enhancement tends to grow with the tube diameter and depends strongly on the nature of the filling molecules.

back
{"type":"article", "name":"c.bousige202110", "author":"C. Bousige and A. Stolz and S. Silva-Santos and J. Shi and W. Cui and C. Nie and M. Marques and E. Flahaut and M. Monthioux and A. San-Miguel", "title":"Superior carbon nanotube stability by molecular filling:a singlechirality study at extreme pressures", "journal":"Carbon", "volume":"183", "OPTnumber":"", "OPTmonth":"10", "year":"2021", "OPTpages":"884–892", "OPTnote":"", "OPTkey":"", "DOI":"10.1016/j.carbon.2021.07.068"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N