Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Two-dimensional binary metal-oxide quasicrystal approximants

A. Huran, H. Wang, M. Marques

2D Materials, 8, 045002, (2021)

DOI: 10.1088/2053-1583/ac0c03

Download: BibTEX

We investigate, using a systematic computational approach, the possibility of the existence of two-dimensional quasicrystalline phases of binary metal-oxides. Our approach relies on the construction of the complete two-dimensional binary phase diagram through the use of unbiased global structural prediction methods. We then identify, in the low-energy periodic phases, structural elements that can be used to generate quasicrystalline phases through an inflation process. In this way we obtain chemically consistent two-dimensional quasicrystal approximants of both barium and titanium oxides. In the proposed structures, the metallic sites occupy the vertices of the aperiodic square-triangle tiling, while the oxygen atoms decorate the interior of the polygons. We then study the properties of the approximants, both free-standing and deposited on a metallic substrate. Finally, we discuss in which circumstances the formation of these phases seems to be favored.

back
{"type":"article", "name":"a.huran202110", "author":"A. Huran and H. Wang and M. Marques", "title":"Twodimensional binary metaloxide quasicrystal approximants", "journal":"2D Materials", "volume":"8", "OPTnumber":"4", "OPTmonth":"10", "year":"2021", "OPTpages":"045002", "OPTnote":"", "OPTkey":"", "DOI":"10.1088/2053-1583/ac0c03"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N