Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Machine learning the physical nonlocal exchange–correlation functional of density-functional theory

J. Schmidt, C. Benavides-Riveros, M. Marques

The Journal of Physical Chemistry Letters, 10, 6425–6431, (2019)

DOI: 10.1021/acs.jpclett.9b02422

Download: BibTEX

We train a neural network as the universal exchange–correlation functional of density-functional theory that simultaneously reproduces both the exact exchange–correlation energy and the potential. This functional is extremely nonlocal but retains the computational scaling of traditional local or semilocal approximations. It therefore holds the promise of solving some of the delocalization problems that plague density-functional theory, while maintaining the computational efficiency that characterizes the Kohn–Sham equations. Furthermore, by using automatic differentiation, a capability present in modern machine-learning frameworks, we impose the exact mathematical relation between the exchange–correlation energy and the potential, leading to a fully consistent method. We demonstrate the feasibility of our approach by looking at one-dimensional systems with two strongly correlated electrons, where density-functional methods are known to fail, and investigate the behavior and performance of our functional by varying the degree of nonlocality.

back
{"type":"article", "name":"j.schmidt201910", "author":"J. Schmidt and C. Benavides-Riveros and M. Marques", "title":"Machine learning the physical nonlocal exchange–correlation functional of densityfunctional theory", "journal":"The Journal of Physical Chemistry Letters", "volume":"10", "OPTnumber":"20", "OPTmonth":"10", "year":"2019", "OPTpages":"6425–6431", "OPTnote":"", "OPTkey":"density functional theory; electrical energy; electrical properties; energy; neural networks", "DOI":"10.1021/acs.jpclett.9b02422"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N