Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Density functional theory beyond the linear regime: Validating an adiabatic local density approximation

N. Helbig, J. Fuks, M. Casula, M. Verstraete, M. Marques, I. Tokatly, A. Rubio

Physical Review A, 83, 032503, (2011)

DOI: 10.1103/physreva.83.032503

Download: BibTEX

We present a local density approximation (LDA) for one-dimensional (1D) systems interacting via the soft-Coulomb interaction based on quantum Monte Carlo calculations. Results for the ground-state energies and ionization potentials of finite 1D systems show excellent agreement with exact calculations obtained by exploiting the mapping of an N-electron system in d dimensions onto a single electron in N×d dimensions, properly symmetrized by the Young diagrams. We conclude that 1D LDA is of the same quality as its three-dimensional (3D) counterpart, and we infer conclusions about 3D LDA. The linear and nonlinear time-dependent responses of 1D model systems using LDA, exact exchange, and the exact solution are investigated and show very good agreement in both cases, except for the well-known problem of missing double excitations. Consequently, the 3D LDA is expected to be of good quality beyond the linear response. In addition, the 1D LDA should prove useful in modeling the interaction of atoms with strong laser fields, where this specific 1D model is often used.

back
{"type":"article", "name":"n.helbig20113", "author":"N. Helbig and J. Fuks and M. Casula and M. Verstraete and M. Marques and I. Tokatly and A. Rubio", "title":"Density functional theory beyond the linear regime: Validating an adiabatic local density approximation", "journal":"Physical Review A", "volume":"83", "OPTnumber":"3", "OPTmonth":"3", "year":"2011", "OPTpages":"032503", "OPTnote":"", "OPTkey":"", "DOI":"10.1103/physreva.83.032503"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N