Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Density gradients for the exchange energy of electrons in two dimensions

S. Pittalis, E. Räsänen, J. Vilhena, M. Marques

Physical Review A, 79, 012503, (2009)

DOI: 10.1103/physreva.79.012503

Download: BibTEX

We derive a generalized gradient approximation to the exchange energy to be used in density functional theory calculations of two-dimensional systems. This class of approximations has a long and successful history, but it has not yet been fully investigated for electrons in two dimensions. We follow the approach originally proposed by Becke for three-dimensional systems [Int. J. Quantum Chem. 23, 1915 (1983); J. Chem. Phys. 85, 7184 (1986)]. The resulting functional depends on two parameters that are adjusted to a test set of parabolically confined quantum dots. Our exchange functional is then tested on a variety of systems with promising results, reducing the error in the exchange energy by a factor of 4 with respect to the simple local density approximation.

back
{"type":"article", "name":"s.pittalis20091", "author":"S. Pittalis and E. Räsänen and J. Vilhena and M. Marques", "title":"Density gradients for the exchange energy of electrons in two dimensions", "journal":"Physical Review A", "volume":"79", "OPTnumber":"1", "OPTmonth":"1", "year":"2009", "OPTpages":"012503", "OPTnote":"", "OPTkey":"", "DOI":"10.1103/physreva.79.012503"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N