Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Ab-initio computation of superconducting properties of elemental superconductors and MgB2

A. Continenza, G. Profeta, A. Floris, C. Franchini, S. Massidda, N. Lathiotakis, M. Marques, M. Lüders, E. Gross

Journal of Superconductivity, 18, 649–652, (2005)

DOI: 10.1007/s10948-005-0052-8

Download: BibTEX

We present ab-initio predictions of superconducting properties of some elemental superconductors and of MgB2, based on the Super-Conducting Density Functional theory (SC-DFT). This formalism allows a description of superconducting properties at thermal equilibrium by means of three “densities”: the ordinary electron density, the superconducting order parameter, and the diagonal of the nuclear N-body density matrix. These quantities are determined through self-consistent solutions of Bogoliubov-de Gennes Kohn-Sham like equations, involving exchange-correlation potentials which are universal functionals of the three above-mentioned quantities. By means of approximate expressions for the relevant functionals, we obtain an ab-initio description of the superconducting state, completely free of empirical parameters. The results of our present implementation of SC-DFT for selected materials are discussed in terms of superconducting energy gap, critical temperature and specific heat, and compared with experiments.

back
{"type":"article", "name":"a.continenza20059", "author":"A. Continenza and G. Profeta and A. Floris and C. Franchini and S. Massidda and N. Lathiotakis and M. Marques and M. Lüders and E. Gross", "title":"Abinitio computation of superconducting properties of elemental superconductors and MgB2", "journal":"Journal of Superconductivity", "volume":"18", "OPTnumber":"5–6", "OPTmonth":"9", "year":"2005", "OPTpages":"649–652", "OPTnote":"", "OPTkey":"", "DOI":"10.1007/s10948-005-0052-8"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N