Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Experimental and numerical investigations of micro-meso damage evolution for a WC/Co-type tool material

Y. Schneider, U. Weber, Ch. Xu, R. Zielke, S. Schmauder, W. Tillmann

Materialia, 21, 101343, (2022)

DOI: 10.1016/j.mtla.2022.101343

Download: BibTEX

Commercial Co/WC/diamond composites with 90vol.% Co also belong to hard metals and, as a kind of tool materials, are very useful. Their deformation behavior can be both ductile and quasi-brittle, determined by the diamond portion and local morphology. Another characteristic is that submicron-sized WC particles, possessing non-negligible strengthening influence due to the size effect, cannot be fully present in a representative microstructure. This work emphasizes the local damage evolutions’ dependence on microstructural features. Rice&Tracey damage and cohesive zone model describe the ductile and quasi-brittle damage behavior. The mechanism-based strain gradient plasticity takes the size effect of submicron-sized WC particles into consideration. Both real and artificial microstructures are used. Besides homogeneous boundary conditions (BCs), the periodic BCs are also applied in a 2D damage simulation. This work proves that FE models with two phases, the homogenized Co-WC matrix and diamond particles, can correctly predict damage evolution. FE results show that the WC phase has a higher mean stress value than the diamond phase, which is proved by the nano-indentation test. From FE simulation results, local hot spots appear in the matrix closed to sharp diamond corners/edges and crossing regions of shear bands. The experimental and numerical results are compared on micro and macro scales. For the local strain distribution and the damage development, numerical predictions match the reality well, even in morphological details. Furthermore, since the published data about WC-Co type tool materials with Co50vol.% are rare, the obtained knowledge in this work also contributes to the data collection.

back
{"type":"article", "name":"y.schneider20223", "author":"Y. Schneider and U. Weber and Ch. Xu and R. Zielke and S. Schmauder and W. Tillmann", "title":"Experimental and numerical investigations of micromeso damage evolution for a WC/Cotype tool material", "journal":"Materialia", "volume":"21", "OPTnumber":"", "OPTmonth":"3", "year":"2022", "OPTpages":"101343", "OPTnote":"", "OPTkey":"Micromechanical damage evolution; Nano-indentation; Local strain field; Hot spot; Size effect; Phase stress", "DOI":"10.1016/j.mtla.2022.101343"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N