Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Dendrite operating state in directional solidification of AlCu binary system: numerical benchmark test with the OpenPhase software

M. Uddagiri, P. Antala, O. Shchyglo, I. Steinbach

Physica Scripta, 98, 115014, (2023)

DOI: 10.1088/1402-4896/acfcef

Download: BibTEX

A scientific benchmark test is carried out for a multi-phase-field model with double-obstacle potential by performing three-dimensional simulations of dendritic growth under directional solidification. The effects of key numerical parameters of the multi-phase-field model such as numerical resolution and interface width on the dendrite tip operating state are studied, optimal parameter values are set, and where the operating state becomes independent of varying these parameters is elaborated. Some uncertainties in the proper choice of effective interface mobility in the thin-interface limit are discussed and a pragmatic solution is adopted. The binary alloy Al-Cu with 4 at.% Cu is chosen as the material system because it has been used in many previous experimental and numerical studies to investigate dendrite morphology under directional solidification. The recently developed sharp phase-field model by Finel and colleagues is adapted to the double-obstacle potential function and included in the benchmark test. It is shown how the sharp phase-field model helps in achieving agreeable convergence with larger discretization, thereby reducing the computational cost significantly. The benchmarks are performed using the OpenPhase software.

back
{"type":"article", "name":"m.uddagiri202311", "author":"M. Uddagiri and P. Antala and O. Shchyglo and I. Steinbach", "title":"Dendrite operating state in directional solidification of AlCu binary system: numerical benchmark test with the OpenPhase software", "journal":"Physica Scripta", "volume":"98", "OPTnumber":"11", "OPTmonth":"11", "year":"2023", "OPTpages":"115014", "OPTnote":"", "OPTkey":"solidification; phase-field; benchmark", "DOI":"10.1088/1402-4896/acfcef"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N