Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Disordering complexion transition of grain boundaries in bcc metals: Insights from atomistic simulations

S. Starikov, A. Abbass, R. Drautz, M. Mrovec

Acta Materialia, 261, 119399, (2023)

DOI: 10.1016/j.actamat.2023.119399

Download: BibTEX

Complexion transitions (CTs) of grain boundaries (GBs) have been a subject of extensive discussions in the last years, but many aspects of this phenomenon are still unclear. Here we studied temperature-induced disordering transitions of GBs in several body-centered cubic metals by means of classical atomistic simulations. Our study shows that gradual heating from room temperature to the melting temperature (Tm) leads to continuous disordering of the GB structure due to spontaneous formation of point defects in all studied metals. This disordering is accompanied by two CTs and exhibits analogies to transitions described by the Berezinskii-Kosterlitz–Thouless-Halperin-Nelson-Young theory. The first CT occurs at temperatures of about 0.7Tm and is characterized by significant changes of mechanical and kinetic properties. The second CT at about 0.9Tm is a premelting transition when the GB order parameter becomes zero.

back
{"type":"article", "name":"s.starikov202312", "author":"S. Starikov and A. Abbass and R. Drautz and M. Mrovec", "title":"Disordering complexion transition of grain boundaries in bcc metals: Insights from atomistic simulations", "journal":"Acta Materialia", "volume":"261", "OPTnumber":"", "OPTmonth":"12", "year":"2023", "OPTpages":"119399", "OPTnote":"", "OPTkey":"self-diffusion; grain boundaries;", "DOI":"10.1016/j.actamat.2023.119399"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N