Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Atomic cluster expansion for a general-purpose interatomic potential of magnesium

E. Ibrahim, Y. Lysogorskiy, M. Mrovec, R. Drautz

Physical Review Materials, 7, 113801, (2023)

DOI: 10.1103/PhysRevMaterials.7.113801

Download: BibTEX

We present a general-purpose parametrization of the atomic cluster expansion (ACE) for magnesium. The ACE shows outstanding transferability over a broad range of atomic environments and captures physical properties of bulk as well as defective Mg phases in excellent agreement with reference first-principles calculations. We demonstrate the computational efficiency and the predictive power of ACE by calculating properties of extended defects and by evaluating the P−T phase diagram covering temperatures up to 3000 K and pressures up to 80 GPa. We compare the ACE predictions with those of other interatomic potentials, including the embedded-atom method, an angular-dependent potential, and a recently developed neural network potential. The comparison reveals that ACE is the only model among the tested potentials that is able to predict correctly the phase diagram in close agreement with experimental observations.

back
{"type":"article", "name":"e.ibrahim202311", "author":"E. Ibrahim and Y. Lysogorskiy and M. Mrovec and R. Drautz", "title":"Atomic cluster expansion for a generalpurpose interatomic potential of magnesium", "journal":"Physical Review Materials", "volume":"7", "OPTnumber":"11", "OPTmonth":"11", "year":"2023", "OPTpages":"113801", "OPTnote":"", "OPTkey":"Atomic cluster expansion", "DOI":"10.1103/PhysRevMaterials.7.113801"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N