Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Angular-dependent interatomic potential for large-scale atomistic simulation of W-Mo-Nb ternary alloys

S. Starikov, P. Grigorev, P. A.T. Olsson

Computational Materials Science, 233, 112734, (2024)

DOI: 10.1016/j.commatsci.2023.112734

Download: BibTEX

We present a new classical interatomic potential designed for simulation of the W-Mo-Nb system. The angular-dependent format of the potential allows for reproduction of many important properties of pure metals and complex concentrated alloys with good accuracy. Special attention during the development and validation of the potential was paid to the description of vacancies, screw dislocations and planar defects, as well as thermo-mechanical properties. Here, the applicability of the developed model is demonstrated by studying the temperature dependence of the elastic moduli and average atomic displacement in pure metals and concentrated alloys up to the melting point.

back
{"type":"article", "name":"s.starikov20241", "author":"S. Starikov and P. Grigorev and P. A.T. Olsson", "title":"Angulardependent interatomic potential for largescale atomistic simulation of WMoNb ternary alloys", "journal":"Computational Materials Science", "volume":"233", "OPTnumber":"", "OPTmonth":"1", "year":"2024", "OPTpages":"112734", "OPTnote":"", "OPTkey":"interatomic potentials; refractory metals;", "DOI":"10.1016/j.commatsci.2023.112734"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N