Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Prediction of ambient pressure conventional superconductivity above 80 K in hydride compounds

A. Sanna, T. Cerqueira, Y. Fang, I. Errea, A. Ludwig, M. Marques

npj Computational Materials, 10, 44, (2024)

DOI: 10.1038/s41524-024-01214-9

Download: BibTEX

The primary challenge in the field of high-temperature superconductivity in hydrides is to achieve a superconducting state at ambient pressure rather than the extreme pressures that have been required in experiments so far. Here, we propose a family of compounds, of composition Mg2XH6 with X = Rh, Ir, Pd, or Pt, that achieves this goal. These materials were identified by scrutinizing more than a million compounds using a machine-learning accelerated high-throughput workflow. We predict that their superconducting transition temperatures are in the range of 45–80 K, or even above 100 K with appropriate electron doping of the Pt compound. These results indicate that, although very rare, high-temperature superconductivity in hydrides is achievable at room pressure.

back
{"type":"article", "name":"a.sanna20242", "author":"A. Sanna and T. Cerqueira and Y. Fang and I. Errea and A. Ludwig and M. Marques", "title":"Prediction of ambient pressure conventional superconductivity above 80 K in hydride compounds", "journal":"npj Computational Materials", "volume":"10", "OPTnumber":"1", "OPTmonth":"2", "year":"2024", "OPTpages":"44", "OPTnote":"", "OPTkey":"", "DOI":"10.1038/s41524-024-01214-9"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N