Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Sampling the materials space for conventional superconducting compounds

T. Cerqueira, A. Sanna, M. Marques

Advanced Materials, 36, 2307085, (2024)

DOI: 10.1002/adma.202307085

Download: BibTEX

A large scale study of conventional superconducting materials using a machine-learning accelerated high-throughput workflow is performed, starting by creating a comprehensive dataset of around 7000 electron–phonon calculations performed with reasonable convergence parameters. This dataset is then used to train a robust machine learning model capable of predicting the electron–phonon and superconducting properties based on structural, compositional, and electronic ground-state properties. Using this machine, the transition temperatures (Tc) of approximately 200 000 metallic compounds are evaluated, all of which are on the convex hull of thermodynamic stability (or close to it) to maximize the probability of synthesizability. Compounds predicted to have Tc values exceeding 5 K are further validated using density-functional perturbation theory. As a result, 541 compounds with Tc values surpassing 10 K, encompassing a variety of crystal structures and chemical compositions, are identified. This work is complemented with a detailed examination of several interesting materials, including nitrides, hydrides, and intermetallic compounds. Particularly noteworthy is LiMoN2, which is predicted to be superconducting in the stoichiometric trigonal phase, with a Tc exceeding 38 K. LiMoN2 has previously been synthesized in this phase, further heightening its potential for practical applications.

back
{"type":"article", "name":"t.cerqueira20241", "author":"T. Cerqueira and A. Sanna and M. Marques", "title":"Sampling the materials space for conventional superconducting compounds", "journal":"Advanced Materials", "volume":"36", "OPTnumber":"1", "OPTmonth":"1", "year":"2024", "OPTpages":"2307085", "OPTnote":"", "OPTkey":"", "DOI":"10.1002/adma.202307085"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N