Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Phase-field simulation framework for modeling martensite and bainite formation in steel

H. Salama, M. Ali, O. Shchyglo, I. Steinbach

Computational Materials Science, 241, 113033, (2024)

DOI: 10.1016/j.commatsci.2024.113033

Download: BibTEX

In this study, we present a combination of phase evolution, chemical diffusion, temperature evolution, and finite strain elasto-plasticity to simulate the martensitic and bainitic transformation using the phase-field software library OpenPhase (OpenPhase, 2023). It is demonstrated how the carbon concentration significantly influences the martensite start temperature and the resulting microstructure. Furthermore, the kinetics of the transformation is strongly influenced by plasticity. For bainitic transformation, it is demonstrated how the holding temperature significantly influences carbon partitioning and the resulting microstructure: higher holding temperatures allow increased carbon diffusion and partitioning, stabilizing retained austenite, which is in good agreement with experimental observations. The present study offers new insights into the microstructure formation mechanisms during martensitic and bainitic transformations in low-carbon steel and offers a consistent modeling approach to model complex phase transformation scenarios in steel and other construction materials.

back
{"type":"article", "name":"h.salama20245", "author":"H. Salama and M. Ali and O. Shchyglo and I. Steinbach", "title":"Phasefield simulation framework for modeling martensite and bainite formation in steel", "journal":"Computational Materials Science", "volume":"241", "OPTnumber":"", "OPTmonth":"5", "year":"2024", "OPTpages":"113033", "OPTnote":"", "OPTkey":"Martensitic transformation; Bainitic transformation; Microstructure; Phase-Field Method", "DOI":"10.1016/j.commatsci.2024.113033"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N