Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Large-scale atomistic simulation of diffusion in refractory metals and alloys

S. Starikov, P. Grigorev, R. Drautz, S. Divinski

Physical Review Materials, 8, 043603, (2024)

DOI: 10.1103/PhysRevMaterials.8.043603

Download: BibTEX

The equilibrium vacancy concentration and atomic diffusion coefficients in dilute and complex refractory alloys have been calculated using various computational methods. The most productive technique has been large-scale atomistic simulation in the form of a numerical experiment in which a crystal with free surfaces was simulated for a relatively long time. This method is based on the concept that the free surface acts as a source of point defects and provides a natural way to achieve an equilibrium concentration of the defects within the bulk after an initial annealing stage. For complex concentrated alloys (CCAs), this numerical experiment offers the possibility to study diffusion processes where standard analytical approaches are difficult to apply due to the large variety of microscopic states. As the simulation results, we found that the transition from dilute alloys to CCA is accompanied by a significant increase in atomic diffusion rate due to both a substantial increase in the vacancy concentration and their mobility.

back
{"type":"article", "name":"s.starikov20244", "author":"S. Starikov and P. Grigorev and R. Drautz and S. Divinski", "title":"Largescale atomistic simulation of diffusion in refractory metals and alloys", "journal":"Physical Review Materials", "volume":"8", "OPTnumber":"", "OPTmonth":"4", "year":"2024", "OPTpages":"043603", "OPTnote":"", "OPTkey":"bulk diffusion;", "DOI":"10.1103/PhysRevMaterials.8.043603"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N