Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Improving maritime domain awareness in Brazil through computer vision technology

M. Emerick de Magalhães, C. Barbosa, K. Cordeiro, D. Isidorio, J. Souza

Journal of Marine Science and Engineering, 11, 1272, (2023)

DOI: 10.3390/jmse11071272

Download: BibTEX

This article discusses the Brazilian maritime authority’s efforts to monitor and control vessels in specific maritime areas using data from the naval traffic control system. Anomalies in vessel locations can signal security threats or illegal activities, such as drug trafficking and illegal fishing. A reliable Maritime Domain Awareness (MDA) is necessary to reduce such occurrences. This study proposes a data-driven framework, CV-MDA, which uses computer vision to enhance MDA. The approach integrates vessel records and camera images to create an annotated dataset for a Convolutional Neural Network (CNN) model. This solution supports detecting, classifying, and identifying small vessels without trackers or that have deliberately shut down their tracking systems in order to engage in illegal activities. Improving MDA could enhance maritime security, including identifying warships invading territorial waters and preventing illegal activities.

back
{"type":"article", "name":"m.emerickdemagalhães20237", "author":"M. Emerick de Magalhães and C. Barbosa and K. Cordeiro and D. Isidorio and J. Souza", "title":"Improving maritime domain awareness in Brazil through computer vision technology", "journal":"Journal of Marine Science and Engineering", "volume":"11", "OPTnumber":"7", "OPTmonth":"7", "year":"2023", "OPTpages":"1272", "OPTnote":"", "OPTkey":"maritime domain awareness; data integration; computer vision", "DOI":"10.3390/jmse11071272"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N