Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Training machine learning interatomic potentials for accurate phonon properties

A. Loew, H. Wang, T. Cerqueira, M. Marques

Machine Learning: Science and Technology, 5, 045019, (2024)

DOI: 10.1088/2632-2153/ad86a1

Download: BibTEX

One of the major challenges in the development of universal machine learning interatomic potentials is accurately reproducing phonon properties. This issue appears to arise from the limitations of available datasets rather than the models themselves. To address this, we develop an extensive dataset of phonon calculations using density-functional perturbation theory (DFPT). We then show how this dataset can be used to train neural-network force fields, by implementing the training and the prediction of force constants in periodic crystals. This approach improves the quality of phonon properties prediction while reducing the number of structures needed for neural network training. We demonstrate the efficiency of this method using two examples of ternary phase diagrams: Ti–Nb–Ta and Li–B–C. In both cases, neural network predictions for the energy and forces show a considerable improvement, while phonon properties are predicted with high precision for all structures across the entire phase diagrams.

back
{"type":"article", "name":"a.loew202412", "author":"A. Loew and H. Wang and T. Cerqueira and M. Marques", "title":"Training machine learning interatomic potentials for accurate phonon properties", "journal":"Machine Learning: Science and Technology", "volume":"5", "OPTnumber":"4", "OPTmonth":"12", "year":"2024", "OPTpages":"045019", "OPTnote":"", "OPTkey":"", "DOI":"10.1088/2632-2153/ad86a1"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N