Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Machine-learning accelerated prediction of two-dimensional conventional superconductors

T. da Silva, T. Cavignac, T. Cerqueira, H. Wang, M. Marques, J. Crivello

Materials Horizons, -, -, (2025)

DOI: 10.1039/d4mh01753f

Download: BibTEX

We perform a large scale search for two-dimensional (2D) superconductors, by using electron–phonon calculations with density-functional perturbation theory combined with machine learning models. In total, we screened over 140 000 2D compounds from the Alexandria database. Our high-throughput approach revealed a multitude of 2D superconductors with diverse chemistries and crystal structures. Moreover, we find that 2D materials generally exhibit stronger electron–phonon coupling than their 3D counterparts, although their average phonon frequencies are lower, leading to an overall lower Tc. In spite of this, we discovered several out-of-distribution materials with relatively high-Tc. In total, 105 2D systems were found with Tc > 5 K. Some interesting compounds, such as CuH2, NbN, and V2NS2, demonstrate high Tc values and good thermodynamic stability, making them strong candidates for experimental synthesis and practical applications. Our findings highlight the critical role of computational databases and machine learning in accelerating the discovery of novel superconductors.

back
{"type":"article", "name":"t.dasilva20251", "author":"T. da Silva and T. Cavignac and T. Cerqueira and H. Wang and M. Marques and J. Crivello", "title":"Machinelearning accelerated prediction of twodimensional conventional superconductors", "journal":"Materials Horizons", "volume":"-", "OPTnumber":"", "OPTmonth":"1", "year":"2025", "OPTpages":"-", "OPTnote":"", "OPTkey":"", "DOI":"10.1039/d4mh01753f"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N