Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
      • Scientific Reports
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Hydrogen accommodation and its role in lattice symmetry in a TiNbZr medium-entropy alloy

C. Wu, Y. Gong, C. Liu, X. Li, G. Gizer, C. Pistidda, F. Körmann, Y. Ma, J. Neugebauer, D. Raabe

Acta Materialia, 288, 120852, (2025)

DOI: 10.1016/j.actamat.2025.120852

Download: BibTEX

Refractory medium/high-entropy alloys (M/HEAs) are emerging as promising alternative materials for hydrogen storage and hydrogen combustion engines due to their favorable thermodynamic and kinetic conditions for hydrogen accommodation (for the former) and promising high-temperature mechanical properties (for the latter). A better understanding of hydrogen-metal interactions is necessary to advance the development of this material class, thus helping leverage hydrogen-based applications. Here we reveal the microstructural evolution of a TiNbZr MEA by in-situ synchrotron high-energy X-ray diffraction (HEXRD) during hydrogenation in pure H2 gas at atmospheric pressure. At 500 °C, dissolved hydrogen atoms gradually expand the crystal lattice isotropically, and the body-centered cubic crystal remains stable up to a hydrogen concentration of ∼46.4 at.%. The thermodynamics of hydrogen accommodation associated with experimental observations in the crystal lattice is elucidated using density functional theory (DFT). The calculations suggest that tetrahedral interstitial sites are the thermodynamically favorable positions for hydrogen accommodation in both cases (i) for a single hydrogen in the special quasirandom structure supercell and (ii) at a high hydrogen concentration (∼45.4 at.%). In the latter case, hydrogen interstitials are randomly distributed on the tetrahedral sites. Upon cooling, it is observed that the body-centered cubic lattice transforms to a body-centered tetragonal structure. The DFT calculations show that this change is related to the ordering distribution of hydrogen interstitials within the TiNbZr lattice. By combining in-situ HEXRD experiments and DFT calculations, the study provides fundamental insights into hydrogen accommodation in the interstitial positions and its impact on the lattice symmetry in TiNbZr MEA.

back
{"type":"article", "name":"c.wu20254", "author":"C. Wu and Y. Gong and C. Liu and X. Li and G. Gizer and C. Pistidda and F. Körmann and Y. Ma and J. Neugebauer and D. Raabe", "title":"Hydrogen accommodation and its role in lattice symmetry in a TiNbZr mediumentropy alloy", "journal":"Acta Materialia", "volume":"288", "OPTnumber":"", "OPTmonth":"4", "year":"2025", "OPTpages":"120852", "OPTnote":"", "OPTkey":"Medium-entropy alloys; Microstructural evolution; Tetragonality Hydrogen accommodation; Ordering effect", "DOI":"10.1016/j.actamat.2025.120852"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N