Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Failure modeling of multiphase steels using representative volume elements based on real microstructures

V. Uthaisangsuk, U. Prahl, W. Bleck

Procedia Engineering, 1, 171-176, (2009)

DOI: 10.1016/j.proeng.2009.06.040

Download: BibTEX

The current work aims at predicting of damage and failure in multiphase steels (Dual phase and transformation-induced plasticity (TRIP) steels) during production processes. These kinds of steel consist of a ferritic matrix with dispersed second phases like bainite, martensite and retained austenite. A microstructure-based approach by means of representative volume elements (RVE) is used taking into account carbon partitioning for the flow curve description of each individual phases. With the help of the RVE it is possible to establish a link between the microstructure and the macroscopic failure behavior. In the case of DP-steels, the real microstructures were investigated in a two-dimensional approach. A cohesive zone model (CZM) has been used to study the debonding analysis of the martensitic islands from the ferrite parent phase. To describe the ductile damage of the ferritic matrix, the Gurson–Tvergaard–Needleman model (GTN) was applied. The parameter identification for the CZM and GTN models is based on metallographic investigations and fracture surface analysis. The calculated stress-strain distribution in the heterogeneous microstructure was studied. The investigations provide a physically-based correlation between the multiphase microstructures, mechanical properties, and failure behavior of multiphase steels for automotive applications.

back
{"type":"article", "name":"v.uthaisangsuk20097", "author":"V. Uthaisangsuk and U. Prahl and W. Bleck", "title":"Failure modeling of multiphase steels using representative volume elements based on real microstructures", "journal":"Procedia Engineering", "volume":"1", "OPTnumber":"1", "OPTmonth":"7", "year":"2009", "OPTpages":"171-176", "OPTnote":"", "OPTkey":"Multiphase steels; Failure; Microstructure; Representative volume elements", "DOI":"10.1016/j.proeng.2009.06.040"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N