Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

Cell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations

C.C. Huang, A. Chatterji, G. Sutmann, G. Gompper, R.G. Winkler

Journal of Computational Physics, 229, 168-177, (2010)

DOI: 10.1016/j.jcp.2009.09.024

Download: BibTEX

A local Maxwellian thermostat for the multiparticle collision dynamics algorithm is proposed. The algorithm is based on a scaling of the relative velocities of the fluid particles within a collision cell. The scaling factor is determined from the distribution of the kinetic energy within such a cell. Thereby the algorithm ensures that the distribution of the relative velocities is given by the Maxwell-Boltzmann distribution. The algorithm is particularly useful for non-equilibrium systems, where temperature has to be controlled locally. We perform various non-equilibrium simulations for fluids in shear and pressure-driven flow, which confirm the validity of the proposed simulation scheme. In addition, we determine the dynamic structure factors for fluids with and without thermostat, which exhibit significant differences due to suppression of the diffusive part of the energy transport of the isothermal system.

back
{"type":"article", "name":"c.c.huang20101", "author":"C.C. Huang and A. Chatterji and G. Sutmann and G. Gompper and R.G. Winkler", "title":"Celllevel canonical sampling by velocity scaling for multiparticle collision dynamics simulations", "journal":"Journal of Computational Physics", "volume":"229", "OPTnumber":"1", "OPTmonth":"1", "year":"2010", "OPTpages":"168-177", "OPTnote":"", "OPTkey":"isothermal simulations; canonical ensemble; velocity scaling; mesoscale hydrodynamics simulations; multiparticle collision dynamics; non-equilibrium simulations; thermalization; stochastic process", "DOI":"10.1016/j.jcp.2009.09.024"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N