Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Institute » Departments & Research Groups » Atomistic Modelling and Simulation » Data-Driven Methods for Atomistic Simulations » DDMA Publications

Just another WordPress site - Ruhr-Universität Bochum

All
  • 2025
  • 2024
  • 2023
  • 2022
  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2025

  • M. Rinaldi, A. Bochkarev, Y. Lysogorskiy et al. Charge-constrained atomic cluster expansion. Physical Review Materials, 9, 033802, (2025)
  • B. Bienvenu, M. Todorova, J. Neugebauer et al. Development of an atomic cluster expansion potential for iron and its oxides. npj Computational Materials, 11, 81, (2025)
  • 2024

  • S. Menon, Y. Lysogorskiy, A. Knoll et al. From electrons to phase diagrams with machine learning potentials using pyiron based automated workflows. npj Computational Materials, 10, 261, (2024)
  • E. Ibrahim, Y. Lysogorskiy, R. Drautz. Efficient parametrization of transferable atomic cluster expansion for water. Journal of Chemical Theory and Computation, 20, 11049−11057, (2024)
  • W. Luo, C. Gasper, S. Zhang et al. Non-basal plasticity in the μ-phase at room temperature. Acta Materialia, 277, 120202, (2024)
  • A. Bochkarev, Y. Lysogorskiy, R. Drautz. Graph atomic cluster expansion for semilocal interactions beyond equivariant message passing. Physical Review X, 14, 021036, (2024)
  • M. Rinaldi, M. Mrovec, A. Bochkarev et al. Non-collinear magnetic atomic cluster expansion for iron. npj Computational Materials, 10, 12, (2024)
  • 2023

  • E. Ibrahim, Y. Lysogorskiy, M. Mrovec et al. Atomic cluster expansion for a general-purpose interatomic potential of magnesium. Physical Review Materials, 7, 113801, (2023)
  • Y. Liang, M. Mrovec, Y. Lysogorskiy et al. Atomic cluster expansion for Pt-Rh catalysts: From ab initio to the simulation of nanoclusters in few steps. Journal of Materials Research, 01, 11, (2023)
  • M. Qamar, M. Mrovec, Y. Lysogorskiy et al. Atomic cluster expansion for quantum-accurate large-scale simulations of carbon. Journal of Chemical Theory and Computation, 19, 5151–5167, (2023)
  • Y. Lysogorskiy, A. Bochkarev, M. Mrovec et al. Active learning strategies for atomic cluster expansion models. Physical Review Materials, 7, 043801, (2023)
  • 2022

  • M. Rinaldi. Modelling magnetism from the electronic structure to continuum for iron and its alloys. PhD Thesis, Ruhr-Univerisität Bochum, (2022)
  • A. Bochkarev, Y. Lysogorskiy, C. Ortner et al. Multilayer atomic cluster expansion for semilocal interactions. Physical Review Research, 4, L042019, (2022)
  • B. Xiao, Y. Lysogorskiy, A. Savan et al. Correlations of composition, structure, and hardness in the high-entropy alloy system Nb–Mo–Ta–W. High Entropy Alloys and Materials, 1, 1-22, (2022)
  • A. Bochkarev, Y. Lysogorskiy, S. Menon et al. Efficient parametrization of the atomic cluster expansion. Physical Review Materials, 6, 013804, (2022)
  • 2021

  • S. Menon, Y. Lysogorskiy, J. Rogal et al. Automated free-energy calculation from atomistic simulations. Physical Review Materials, 5, 103801, (2021)
  • M. Rinaldi, M. Mrovec, M. Fähnle et al. Determination of spin-wave stiffness in the Fe-Si system using first-principles calculations. Physical Review B, 104, 064413, (2021)
  • S. Starikov, D. Smirnova, T. Pradhan et al. Angular-dependent interatomic potential for large-scale atomistic simulation of iron: development and comprehensive comparison with existing interatomic models. Physical Review Materials, 5, 063607, (2021)
  • A. Ferrari, Y. Lysogorskiy, R. Drautz. Design of refractory compositionally complex alloys with optimal mechanical properties. Physical Review Materials, 5, 063606, (2021)
  • Y. Lysogorskiy, C. van der Oord, A. Bochkarev et al. Performant implementation of the atomic cluster expansion (PACE) and application to copper and silicon. npj Computational Materials, 7, 97, (2021)
  • P. Maffettone, L. Banko, P. Cui et al. Crystallography companion agent for high-throughput materials discovery. Nature Computational Science, 1, 290-297, (2021)
  • 2020

  • S. Starikov, I. Gordeev, Y. Lysogorskiy et al. Optimized interatomic potential for study of structure and phase transitions in Si-Au and Si-Al systems. Computational Materials Science, 184, 109891, (2020)
  • S. Menon, G. Díaz Leines, R. Drautz et al. Role of pre-ordered liquid in the selection mechanism of crystal polymorphs during nucleation. The Journal of Chemical Physics, 153, 104508, (2020)
  • S. Amariamir. Combining active and transfer learning for data-guided search of new materials. Master Thesis, Ruhr-Universität Bochum, (2020)
  • L. Banko, Y. Lysogorskiy, D. Grochla et al. Predicting structure zone diagrams for thin film synthesis by generative machine learning. Communications Materials, 1, 15, (2020)
  • 2019

  • A. Ferrari, M. Schröder, Y. Lysogorskiy et al. Phase transitions in titanium with an analytic bond-order potential. Modelling and Simulation in Materials Science and Engineering, 27, 085008, (2019)
  • C. Sutton, L. M. Ghiringhelli, T. Yamamoto et al. Crowd-sourcing materials-science challenges with the NOMAD 2018 Kaggle competition. npj Computational Materials, 5, 111, (2019)
  • S. Menon, G. Díaz Leines, J. Rogal. Pyscal: a Python module for structural analysis of atomic environments. Journal of Open Source Software, 4, 1824, (2019)
  • J. Janssen, S. Surendralal, Y. Lysogorskiy et al. Pyiron: an integrated development environment for computational materials science. Computational Materials Science, 163, 24-36, (2019)
  • A. Ferrari, P. Kadletz, T. Chakraborty et al. Reconciling experimental and theoretical data in the structural analysis of Ti-Ta shape memory alloys. Shape Memory and Superelasticity, 5, 6-15, (2019)
  • T. Hammerschmidt, B. Seiser, M. Ford et al. BOPfox program for tight-binding and analytic bond-order potential calculations. Computer Physics Communications, 235, 221-233, (2019)
  • Y. Lysogorskiy, T. Hammerschmidt, J. Janssen et al. Transferability of interatomic potentials for molybdenum and silicon. Modelling and Simulation in Materials Science and Engineering, 27, 025007, (2019)
  • 2018

  • A. G. Kiiamov, Y. Lysogorskiy, F. G. Vagizov et al. Vibrational properties and magnetic specific heat of the covalent chain antiferromagnet RbFeSe2. Physical Review B, 98, 214411, (2018)
  • 2017

  • S. Menon. Transition path sampling of seeded nucleation during solidification in nickel. (2017)
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N